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Abstract: Although many studies have been conducted on leukemia, only a few have analyzed
the metabolomic profiles of various leukemic cells. In this study, the metabolomes of THP-1,
U937, KG-1 (acute myelogenous leukemia, AML), K562 (chronic myelogenous leukemia, CML),
and cord blood-derived CD34-positive hematopoietic stem cells (HSC) were analyzed using gas
chromatography-mass spectrometry, and specific metabolic alterations were found using multivariate
statistical analysis. Compared to HSCs, leukemia cell metabolomes were found to have significant
alterations, among which three were related to amino acids, three to sugars, and five to fatty
acids. Compared to CML, four metabolomes were observed specifically in AML. Given that overall
more metabolites are present in leukemia cells than in HSCs, we observed that the activation
of glycolysis and oxidative phosphorylation (OXPHOS) metabolism facilitated the incidence of
leukemia and the proliferation of leukemic cells. Analysis of metabolome profiles specifically
present in HSCs and leukemia cells greatly increases our basic understanding of cellular metabolic
characteristics, which is valuable fundamental knowledge for developing novel anticancer drugs
targeting leukemia metabolism.

Keywords: acute myelogenous leukemia; chronic myelogenous leukemia; hematopoietic stem cells;
metabolome; THP-1; U937; KG-1; K562

1. Introduction

Leukemia, a type of hematologic malignancy, occurs when immature white blood cells grow
abnormally. Leukemia is known to be related to carcinogenic genes, chromosomal abnormalities, or bone
marrow damage caused by viruses, radiation, or chemicals. It can be acute or chronic, depending on
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its progress pattern. Additionally, it can be myeloid or lymphocytic in nature, depending on the
type of white blood cells affected. Generally, acute leukemia occurs when immature hematopoietic
stem cells (HSC) develop into malignant tumor cells, whereas chronic leukemia occurs when partially
matured hematopoietic cells are transformed [1–3]. Similar to other cancers, leukemia cells show
obvious genetic variation and reprogram nutrition acquisition and metabolic pathways to meet the
demands for bioenergy, biosynthesis, and oxidation-reduction [4]. Generally, to meet the increased
nutritional demand, cancer cells undergo metabolic reprogramming of ATP via conversion of pyruvate
to lactate rather than channeling it to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS) in mitochondria [5,6]. However, recently, aerobic glycolysis and OXPHOS metabolism have
been found to be actively involved in cancer cell growth and division [7]. Hence, each cell has a unique
metabolic mechanism depending on cell fate, and thus, has a different type of metabolome. Therefore,
metabolic profiling research has drawn much attention as an approach for immediate detection of
dynamic cellular alteration and status, such as oncogenesis.

The metabolome is a set of metabolites that can be used to quantify phenotypes in cells, tissues,
and diseases [8]. Through metabolome profiling, it is possible to provide basic physiological information
on phenotype expression independently or in combination with gene expression data. It is also
possible to identify, quantify, and systematically determine the shift of metabolomes in cells or
tissues, which helps in providing a better understanding and re-analysis of metabolome networks in
association with the physiologic and pathologic states of the metabolome group. It further allows for
the elucidatation of disease-specific metabolome alterations in the network model. By detecting and
defining the main metabolic changes in a disease state and comparing them with the metabolomic profile
in the normal state, it is possible to identify the cause of disease [9,10]. In particular, the detection of
alterations in a few metabolomes allows early diagnosis of disease. Further, metabolome profiling-based
classification makes it easier to identify diagnostic and other biomarkers through a clustering pattern
analysis. With metabolome-directed disease detection, especially the detection of a new metabolic
mechanism, which may be the direct cause of a disease, the challenges related to the medicinal efficacy
and adverse effects of existing drugs can be overcome, and new drugs for intractable diseases can
be developed.

Unlike normal cells, cancer cells metabolize glucose by glycolysis rather than by producing ATP
via further oxidative phosphorylation. Even in the presence of oxygen, many cancer cells produce ATP
by abnormally depending on glycolysis. This is known as the Warburg effect (a process called aerobic
glycolysis), the main characteristic of cancer cell metabolism [11]. This metabolic alteration resulting
from DNA mutation does not mean that the cancer cell lacks respiratory capacity. Via aerobic glycolysis,
intermediates in the process are converted to biosynthetic pathways, thereby generating nucleotides,
lipids, and amino acids required by the fast proliferating cells. Therefore, metabolic alteration is
considered to be necessary for cell growth and division. It is known that metabolic alterations in cancer
cells inhibit immune responses against them and help activate oncogenes [12]. Since the Warburg
effect is a critical change during tumorigenesis, it is important to accurately determine the metabolic
mechanism of cancer cells to develop anticancer drugs. In addtion the oxidative phosphorylation in
some cancer cells, including leukemias, lymphomas, pancreatic ductal adenocarcinomas, high OXPHOS
subtype melanomas, and endometrial carcinomas, fails to be suppressed and cancer growth continues
unabated [7].

Metabolomic profiling of tumor cells helps predict a patient’s present condition and changes that
may occur in the future. Therefore, metabolomic reprogramming can be applied for oncotherapy [13].
In this study, gas chromatography was used to determine the metabolome expression in cell lines
derived from acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), and cord
blood (V-derived CD34 positive hematopoietic stem cells (HSCs) and to select a common metabolome
between AML and CML for the identification of novel putative diagnostic biomarkers for leukemia.
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2. Results

2.1. Metabolic Differences between HSCs and Leukemia Cell Lines

To analyze the specific metabolites of leukemia cells, three AML cell lines and one CML cell
line were purchased from the American Type Culture Collection (ATCC). These cells, alongside
normal blood cells and cord blood-derived HSCs, were cultured individually. Samples analyzed using
GC-TOF-MS were used for further multivariate analysis of each feature. After that, by comparing the
integrated metabolites, the relative abundance of metabolites for each cell population was quantified.
We performed principal component analysis (PCA) and partial least squares-discriminant analysis
(PLS-DA) to develop a visual plot for evaluating differences and consistencies in the metabolite profiles
of four leukemia cell lines and HSC. The principal component (PC) scores used for PCA plotting
increased for different cell types. Our PCA plot indicates that the normal control HSCs were clearly
clustered from the leukemia cell line groups (THP-1, U-937, KG-1, and K562) along with PC1 (32.14%).
Along with PC2 (15.37%), the normal control HSC and acute leukemia cell lines were clearly clustered
from the chronic leukemia cell line groups (K-562) (Figure 1A). PLS-DA with model values of R2X(cum)

= 0.580, R2Y(cum) = 0.930, and Q2
(cum) = 0.930 indicated that the fitness and prediction accuracy of

the model were similar to the PCA results (Figure 1B). The quality of the model was evaluated by
cross-validation analysis (p = 0.012858). PCA and PLS-DA showed obvious differences in the metabolite
profiles of these cell types. Similar metabolite profiles between the cell types indicate that they are
closely related in their metabolic properties, and hence, cell fate.

Metabolites 2020, 10, x FOR PEER REVIEW 3 of 12 

select a common metabolome between AML and CML for the identification of novel putative 
diagnostic biomarkers for leukemia. 

2. Results 

2.1. Metabolic Differences between HSCs and Leukemia Cell Lines 

To analyze the specific metabolites of leukemia cells, three AML cell lines and one CML cell 
line were purchased from the American Type Culture Collection (ATCC). These cells, alongside 
normal blood cells and cord blood-derived HSCs, were cultured individually. Samples analyzed 
using GC-TOF-MS were used for further multivariate analysis of each feature. After that, by 
comparing the integrated metabolites, the relative abundance of metabolites for each cell population 
was quantified. We performed principal component analysis (PCA) and partial least 
squares-discriminant analysis (PLS-DA) to develop a visual plot for evaluating differences and 
consistencies in the metabolite profiles of four leukemia cell lines and HSC. The principal 
component (PC) scores used for PCA plotting increased for different cell types. Our PCA plot 
indicates that the normal control HSCs were clearly clustered from the leukemia cell line groups 
(THP-1, U-937, KG-1, and K562) along with PC1 (32.14%). Along with PC2 (15.37%), the normal 
control HSC and acute leukemia cell lines were clearly clustered from the chronic leukemia cell line 
groups (K-562) (Figure 1A). PLS-DA with model values of R2X(cum) = 0.580, R2Y(cum) = 0.930, and Q2(cum) 
= 0.930 indicated that the fitness and prediction accuracy of the model were similar to the PCA 
results (Figure 1B). The quality of the model was evaluated by cross-validation analysis (p = 
0.012858). PCA and PLS-DA showed obvious differences in the metabolite profiles of these cell 
types. Similar metabolite profiles between the cell types indicate that they are closely related in their 
metabolic properties, and hence, cell fate. 

 
Figure 1. (A) Principal component analysis (PCA) and (B) partial least squares-discriminant analysis 
(PLS-DA) score plot derived from the GC-TOF-MS datasets of four different leukemia cell lines and 
one hematopoietic stem cells (HSC) line. (●, HSC; ●, THP-1; ●, KG-1; ●, U-937; ●, K562). 

2.2. Hierarchical Clustering between HSCs and Leukemia Cell Lines 

To select the metabolites responsible for the differences observed in Section 2.1, variable 
importance to projection (VIP) values > 0.7 of PLS–DAs were used. The VIP value is an important 
parameter for detecting potential biomarker candidates and possible pathways, including those 
involved in diseases that reflect the correlation of the metabolites with different biological states. 
For evaluating statistical significance, p < 0.05 derived from the one-way ANOVA was applied 
[14,15]. Selected metabolites were identified by comparing MS fragment patterns with commercial 
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fatty acids/lipid, three electron transport chains, and 14 unknown metabolites, were identified that 
differed significantly among the experimental groups. 

Figure 1. (A) Principal component analysis (PCA) and (B) partial least squares-discriminant analysis
(PLS-DA) score plot derived from the GC-TOF-MS datasets of four different leukemia cell lines and one
hematopoietic stem cells (HSC) line. (•, HSC; •, THP-1; •, KG-1; •, U-937; •, K562).

2.2. Hierarchical Clustering between HSCs and Leukemia Cell Lines

To select the metabolites responsible for the differences observed in Section 2.1, variable importance
to projection (VIP) values > 0.7 of PLS–DAs were used. The VIP value is an important parameter
for detecting potential biomarker candidates and possible pathways, including those involved in
diseases that reflect the correlation of the metabolites with different biological states. For evaluating
statistical significance, p < 0.05 derived from the one-way ANOVA was applied [14,15]. Selected
metabolites were identified by comparing MS fragment patterns with commercial standard compounds
and various databases, including the National Institutes of Standards and Technology (NIST) library,
the Human Metabolome Database (HMDB, http://www.hmdb.ca/), and Wiley 9 [14,15]. Detailed
information regarding these metabolites is presented in Table 1. A total of 43 metabolites, including
five organic acids, eight amino acids, five sugars/sugar alcohols, eight fatty acids/lipid, three electron
transport chains, and 14 unknown metabolites, were identified that differed significantly among the
experimental groups.

http://www.hmdb.ca/
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Table 1. List of the significantly different metabolites selected using the PLS-DA model based on the GC-TOF-MS dataset for 4 different leukemia cells and normal HSC.

No. Ret (min) a VIP1 VIP2 Tentative Identifications b Unique Mass (m/z) MS Fragment Pattern (m/z) REF c

Organic acids

1 5.13 0.78 0.51 Lactic acid 117 73, 147, 117, 75, 66, 59, 148, 191 STD/MS
2 5.96 1.34 1.04 Pyruvic acid 220 73, 147, 100, 133, 59, 72, 86, 220 STD/MS
3 7.61 1.80 1.27 Succinic acid 247 73, 147, 75, 247, 59, 77, 69, 50 STD/MS
4 9.19 0.35 1.67 Malic acid 233 73, 147, 55, 75, 52, 133, 156, 233 STD/MS
5 11.76 0.78 1.71 Citric acid 273 73, 147, 75, 273, 74, 50, 149, 133 STD/MS

Amino acids

6 7.59 1.29 1.11 Glycine 174 73, 174, 147, 341, 86, 59, 77, 100 STD/MS
7 8.08 1.61 1.15 Serine 204 73, 100, 204, 119, 188, 218, 193 STD/MS
8 8.33 0.80 1.37 Threonine 219 73, 58, 174, 57, 147, 75, 86, 219 STD/MS
9 8.66 1.01 1.55 β-Alanine 248 73, 174, 147, 248, 86, 59, 100, 133 STD/MS

10 9.45 1.09 1.08 Aspartic acid 232 73, 156, 232, 147, 100, 75, 79, 52 STD/MS
11 9.51 1.17 1.49 5-oxo-proline 156 156, 73, 147, 75, 59, 230, 258 STD/MS
12 11.73 1.57 1.11 Ornithine 142 73, 142, 174, 147, 59, 74, 86, 100 STD/MS
13 12.42 1.16 1.30 Lysine 156 73, 75, 147, 59, 174, 156, 103 STD/MS

Sugars and sugar alcohols

14 12.18 0.79 1.56 Fructose 217 73, 103, 217, 147, 74, 307, 133, 117 STD/MS
15 12.37 1.56 1.26 Glucose 160 73, 147, 205, 160, 103, 319, 74, 129 STD/MS
16 12.63 1.86 1.23 Saccharide 1 319 73, 147, 103, 217, 205, 319, 117, 129 MS
17 13.20 1.09 1.49 Saccharide 2 204 73, 204, 147, 75, 117, 217, 205, 129 MS
18 13.62 0.89 1.67 myo-Inositol 217 73, 147, 217, 191, 305, 129, 133 STD/MS

Fatty acids and lipids

19 11.51 1.56 1.12 Phosphorylethanolamine 299 73, 100, 59, 299, 172, 147, 74, 114 MS
20 11.84 1.69 1.13 Myristic acid 285 73, 75, 117, 129, 132, 55, 145, 131 STD/MS
21 13.14 1.80 1.21 Palmitic acid 313 73, 75, 117, 132, 129, 55, 145, 131 STD/MS
22 14.16 1.47 0.98 Linoleic acid 337 75, 73, 67, 55, 81, 79, 129, 117, 337 STD/MS
23 14.19 1.70 1.36 Oleic acid 339 75, 73, 55, 117, 129, 67, 145, 339 STD/MS
24 14.33 1.84 1.27 Stearic acid 341 73, 75, 117, 132, 129, 131, 145, 341 STD/MS
25 16.21 1.47 1.55 α-Palmitin 371 73, 57, 55, 147, 75, 69, 129, 371 MS
26 19.74 1.35 1.26 Cholesterol 129 129, 73, 75, 55, 57, 81, 95, 105 STD/MS
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Table 1. Cont.

No. Ret (min) a VIP1 VIP2 Tentative Identifications b Unique Mass (m/z) MS Fragment Pattern (m/z) REF c

Electron Transport Chains

27 5.65 1.15 0.91 Hydroxylamine 146 73, 133, 146, 59, 119, 86, 147, 130 STD/MS
28 7.31 1.65 1.11 Phosphoric acid 299 73, 299, 133, 211, 300, 207, 193 STD/MS
29 7.56 0.90 0.65 Cortisol 256 73, 107, 77, 55, 256, 69, 84, 140 STD/MS

Etc.

30 6.35 1.03 1.50 N.I. 1 184 73, 58, 69, 228, 110, 77, 134, 184 -
31 6.66 1.07 0.77 N.I. 2 228 73, 69, 58, 228, 110, 77, 134, 184 -
32 7.87 0.89 0.71 N.I. 3 184 73, 184, 134, 59, 77, 86, 100, 69 -
33 9.14 1.33 1.58 N.I. 4 281 73, 147, 281, 327, 74, 282, 59, 415 -
34 10.48 1.32 1.61 N.I. 5 355 73, 355, 147, 221, 281, 74, 356 -
35 11.63 1.49 1.69 N.I. 6 429 73, 147, 221, 429, 74, 355, 207 -
36 12.66 1.44 1.67 N.I. 7 281 73, 147, 281, 221, 74, 207, 282, 341 -
37 13.43 1.15 0.82 N.I. 8 136 55, 69, 122, 56, 54, 67, 83, 136 -
38 14.45 1.43 1.59 N.I. 9 355 73, 147, 221, 355, 281, 429, 207 -
39 15.76 1.43 1.08 N.I. 10 55 55, 69, 57, 83, 54, 56, 67, 122 -
40 15.97 1.49 1.56 N.I. 11 355 73, 147, 221, 281, 355, 207, 429 -
41 16.66 1.53 1.59 N.I. 12 221 73, 147, 221, 355, 281, 207, 429 -
42 17.30 1.50 1.61 N.I. 13 221 73, 147, 221, 281, 355, 207, 74 -
43 17.35 1.12 0.99 N.I. 14 131 75, 131, 55, 144, 116, 128, 69, 394 -

a Retention time; b Tentative identifications based on variable importance to projection (VIP) > 0.7 and p value < 0.05; c Metabolites identified based on the in-house library of standard
compounds (STD/MS: Standard compounds/Mass spectrometry fragments).
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Our findings demonstrate the major differences in the metabolomic profiles of leukemia cells
and normal HSC. As metabolite differences between these cells may have significant phenotypic
consequences and include biomarkers for leukemia, we identified metabolites that differed between
these different cell types. To obtain comprehensive metabolite accumulation patterns in our
experimental cell groups, metabolites were organized by hierarchical clustering analysis (HCA;
Figure 2), which revealed six clusters. The six clusters were based on the metabolites that were
distinctively expressed in each cell type. Cluster 1 contained metabolites, such as threonine, cortisol,
and salicylic acid, with relatively higher accumulation in HSCs, KG-1, and K562 cells. Cluster 2 was
specifically expressed in HSCs and included fructose, lysine, phosphoric acid, succinic acid, myristic
acid, glucose, saccharide, serine, and palmitic acid. Cluster 3 included metabolites such as pyruvic acid,
linoleic acid, hydroxylamine, ornithine, and oleamide, which were specifically expressed in leukemia
cell lines. Metabolites such as saccharide, phosphorylethanolamine, and alpha-palmitin from Cluster 4
were expressed in THP-1 and U937 cells. The metabolites belonging to Clusters 3 and 4 were relatively
highly expressed compared to HSC, and Cluster 4 is a metabolite that was relatively highly expressed
in THP-1 and U937 cells. Cluster 5 was specifically expressed in K562 cells as an AML and included
glycine, aspartic acid, malic acid, 5-oxo-proline, beta-alanine, citric acid, and myo-inositol. Metabolites,
such as lactic acid, oleic acid, and cholesterol from Cluster 6 were expressed in U937 and K562 cells.
The HCA also grouped these samples separately according to the metabolic status, which suggests
that differences in cell metabolite characteristics between leukemias and normal HSCs may reflect the
reprogramming of metabolic systems during disease development.
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Figure 2. Heatmap showing hierarchical clustering analysis of metabolomic changes among four
different leukemia cell lines and a normal hematopoietic stem cell (HSC) line. Metabolites were selected
by VIP value > 0.7 and p value < 0.05. The rows display the metabolites, and the columns represent
the cell lines. The colored squares (blue-to-red) represent fold changes normalized by averaging each
metabolite of four different leukemia cells and a normal HSC line. The color scheme is as follows: lower
limit value, −3.17 (green); middle limit value, −0.18 (black); upper limit value, 2.73 (red).
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2.3. Metabolic Differences Observed between HSCs and Leukemia Cell Lines Suggest Novel Putative
Metabolic Biomarkers

Following the metabolomic analysis of HSC control and leukemia cell lines, various metabolites
were selected as candidate biomarkers by multivariate analysis, and we generated a metabolic pathway
to show the distribution and the relationships among these metabolites (Figure 3). These metabolites
belong to pathways relating to amino acids, carbohydrates, and fatty acid biosynthesis. The relative
levels of the metabolites were dramatically different between normal HSC control and leukemia cell
lines. Carbohydrate metabolism linked to glucose and saccharide appeared to be upregulated in HSCs
but downregulated in leukemia cell lines. In contrast, the metabolic pathways related to amino acid
biosynthesis (glycine, aspartic acid, ornithine, lysine, 5-oxo-proline, and beta-alanine) were upregulated
in leukemia compared to HSC. However, unlike other amino acid metabolites, serine was relatively
downregulated in leukemia cell lines. Significant induction of these compounds (pyruvate, lactic acid,
citric acid, and malic acid) coupled with intermediate glucose metabolism contents in leukemia cell
lines suggest their collective contribution to leukemia development. However, normal HSCs showed
higher levels of glucose in cellular metabolites than leukemia cell lines. Therefore, from these data,
we suspected that glucose consumption might enhance leukemia cell metabolism to maintain the
cancerous phenotype by increasing the levels of glycolysis and TCA intermediate metabolites to meet
the heightened energy demands.
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leukemia cell lines and a normal hematopoietic stem cell (HSC) line. The pathway was modified
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/).
The colored squares (blue-to-red) represent relative metabolite abundance in the five cell lines.
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3. Discussions

The metabolome refers to the collection of all low molecular weight (10–1000 Da) metabolites
in a biological cell, tissue, organ, or biological fluid. Metabolomes are produced as the final stage of
biological processes and help to maintain cellular homeostasis. They are also useful for monitoring
systemic changes in a living organism that cannot be understood via gene expression and proteome
alteration studies alone. Metabolomic profiles provide actual snapshots of physiological conditions
within biological systems by establishing a network of low molecular metabolites influenced by various
genetic, physiological, pathological, or environmental factors. Thus, a comprehensive analysis of
metabolomes can highlight the variations observed with physiological and disease states and may help
to elucidate the basis for the observed differences. This offers valuable information for investigating the
biological mechanisms influencing disease phenotypes. Accordingly, metabolome-based biomarkers
can help identify specific phenotypes and serve as primary markers for determining the mechanism and
basis for vital phenomena [16,17]. Here, we profiled the metabolomes of three types of AML-derived
cell lines (TH-1, KG-1, and U937 cells) and one CML-derived cell line (K562), and compared our results
with those obtained from normal HSCs. We defined the specifically expressed metabolomes in each
cell line, verified the characteristics of each leukemia cell line, and proposed potential biomarkers.
Following the metabolomic analysis of leukemia cell lines and normal HSCs, various metabolites
and metabolic pathways were evaluated via multivariate analysis to identify candidate biomarkers
(Figures 1 and 2). Further, we linked various pathways related to amino acids, carbohydrates, and fatty
acid metabolism to highlight the relationships among these metabolites (Figure 3).

The THP-1 cell line used in this study is a human leukemia monocytic cell line derived from
the peripheral blood of a one-year-old patient with acute monocytic leukemia [18,19]. This cell line
expresses a high level of citric acid (organic acid), myo-inositol (sugars and sugar alcohols), oleamide,
alpha-palmitin, and cholesterol (fatty acids and lipids), but lower levels of saccharide, phosphoric
acid, succinic acid, and myristic acid than do HSCs (Figure S1). The human monoblastic leukemia
cell line U937, which is a valuable model for analyzing monocyte–macrophage differentiation, was
isolated from the histiocytic lymphoma of a 37-year-old male patient and harbors the t(10;11)(p13;q14)
translocation [20,21]. This cell line expresses higher levels of citric acid (organic acid), myo-inositol
(sugars and sugar alcohols), oleamide, alpha-palmitin, and cholesterol (fatty acids and lipids), but lower
levels of glucose, saccharide, cortisol, myristic acid, succinic acid, phosphoric acid, pyruvic acid, and
lysine than do HSCs (Figure S2). It was possible to differentiate THP-1 and U937 monocytic circulatory
leukemic cells, based on having similar abnormalities in the 11q23 translocation, into various types of
macrophages or dendritic cells in vitro [22,23]. The basic difference between the two cell types is their
origin and maturity. Since they can differentiate into tissues, they are more mature, whereas THP-1
cells are less mature as they originate from leukemic cells [19]. THP-1 and U937 as monocytic leukemia
cells specifically expressed alpha-palmitin, and saccharides were relatively overexpressed in both cell
lines compared to that of other leukemia cell lines. When THP-1 and U937 were compared to each
other, THP-1 expressed more citric acid, hydroxylamine, oleamide, lysine, and oleic acid.

The KG-1 cell line was established from bone marrow cells of a patient with erythroleukemia
evolving to AML with considerable pleomorphism with a predominance of myeloblasts and
promyelocytes, and it harbors a partial hexasomy of the long arm of chromosome 8 [24]. This cell line
expresses high levels of citric acid (organic acid), myo-inositol (sugars and sugar alcohols), oleamide,
alpha-palmitin, cholesterol (fatty acids and lipids), and 5-oxo-proline (amino acids) compared to the
levels produced by HSCs (Figure S3).

The human chronic myeloid leukemia K562 cell line is the first human immortalized
erythroleukemia cell line established from a 53-year-old female CML patient [25,26]. Unlike CML, AML
cell lines showed abnormal growth of undifferentiated and nonfunctional hemocytoblasts (leukemia
blasts). However, in CML, cells carrying the Philadelphia chromosome express the Bcr-Abl fusion
protein, are relatively mature, and have excessively accumulated abnormal white blood cells [27].
K562 highly expressed citric acid and malic acid, myo-inositol (sugars and sugar alcohols), oleamide,
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alpha-palmitin, cholesterol (fatty acids and lipids), 5-oxo-proline, beta-alanine, glycine, and aspartic
acid (amino acids) compared to the levels produced by HSCs (Figure S4). Furthermore, they expressed
at relatively higher levels myo-inositol, fructose, malic acid, glucose, cholesterol, 5-oxo-proline,
beta-alanine, and citric acid metabolites compared to those produced by AML cell lines (THP-1, U937,
and KG1). Especially, K562 was confirmed to have increased amino acid metabolites expression
compared to that of AML.

To analyze the specific metabolomes of leukemia cells, this study used CD34+ cells extracted from
human cord blood as normal control. CD34+ HSCs are precursors for producing all blood cell types
and feature self-renewal and differentiation. One of the many proposed causes of leukemia is that
HSCs can accumulate multiple mutations within a short period, and the existing ability for asymmetric
differentiation and self-renewal can result in carcinogenic mutation [28,29]. Since normal HSCs and
leukemic cells share self-renewal and diverse developmental pathways, HSCs with accumulated
genetic variation are highly likely to be the origin of leukemia [30]. Hence, comparing and analyzing
metabolism in HSCs and leukemia cells can help identify metabolic processes unique to each cell type
and reveal the different mechanisms behind their differentiation and self-renewal. This, in turn, would
provide important information for the development of drugs targeting leukemia metabolism. From
our data, we infer that HSCs produce higher levels of succinic acid/serine/glucose/saccharide/palmitic
acid/oleic acid/stearic acid than do leukemia cell lines. In contrast to a previous study in which fatty
acid oxidation was critical for the growth of acute leukemia cells, the findings of our study reveal that
fatty acid biosynthesis is downregulated in leukemia cell lines compared to that in HSCs [31,32].

Similar to a previous report, our metabolite profiling study also revealed that leukemia cell lines
produce an overall higher number of metabolites compared to that of HSCs, possibly owing to a
high rate of aerobic glycolysis associated with cancer cells [33,34]. Both glycolysis and OXPHOS
are activated in leukemia cells owing to the enhanced need for energy metabolism and synthesis of
intermediates to support cancer occurrence and development. Although these study results have
helped to improve the understanding of leukemia cell metabolism, no new metabolic program for
controlling the start and progress of leukemia could be suggested. Therefore, further studies focusing
on multiple metabolic pathways using various systems and approaches are warranted to understand
the alterations in metabolism and propose reliable biomarkers.

4. Materials and Methods

4.1. Chemicals and Reagents

Analytical grade methanol and water were purchased from Fisher Scientific (Pittsburgh, PA, USA).
Pyridine, methoxyamine hydrochloride, N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA),
and standard compounds were obtained from Sigma Chemical Co. (St. Louis, MO, USA).

4.2. Cell Culture

Normal human cord blood was provided by Soonchunhyang University Bucheon/Cheonan
Hospital in South Korea. This study was approved by local Institutional Review Boards
(2018-05-037-002). Fully informed consent was obtained from all patients before donation. Mononuclear
cells were isolated by density gradient centrifugation over Ficoll-Plaque Plus (GE Healthcare,
Marlborough, MA, USA) according to the manufacturer’s protocol. CD34+ cells were obtained
through immunomagnetic selection (Miltenyi Biotec, Auburn, CA, USA) over two sequential columns.
This procedure yielded CD34+ cells with 90–98% purity, which were then cultured in RPMI-1640
medium containing 10% fetal bovine serum (FBS), 100 ng/mL stem cell factor (SCF), thrombopoietin
(TPO), and FMS-like tyrosine kinase 3 ligand (FLT3L) to expand cell numbers [35]. Leukemia cell
lines (THP-1, KG-1, HL-60, U-937, and K562) were purchased from the ATCC (Manassas, VA, USA).
Cell lines were cultured in RPMI1640 medium supplemented with 10% heat-inactivated FBS and 1%
penicillin/streptomycin (Invitrogen) at 37 ◦C in a humidified incubator maintained at 5% CO2.
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4.3. Sample Collection and Preparation for Metabolite Analysis

Metabolites were extracted from leukemia cell lines as described by He et al. [14] with some
modifications. Briefly, cell samples were extracted with 100% methanol (1 mL) and 10 µL internal
standard solution (2-chlorophenylalanine, 1 mg/mL in water) using an MM400 mixer mill (Retsch®,
Haan, Germany) at a frequency of 30 s−1 for 10 min, followed by 10 min of sonication. Subsequently,
the extracted samples were centrifuged at 10,000 rpm for 10 min at 4 ◦C, and the supernatants were
filtered using 0.2-µm polytetrafluorethylene (PTFE) filters (Chromdisc, Daegu, Korea). The filtered
supernatants were completely dried using a speed vacuum concentrator (Biotron, Seoul, Korea).
The final concentration of the analyzed sample was 10 mg/mL.

4.4. Gas Chromatography–Time-of-Flight Mass Spectrometry Analysis

Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) analysis was performed
using an Agilent 7890A gas chromatograph system coupled with an Agilent 7693 autosampler (Agilent,
Atlanta, GA, USA) as previously described [15]. For analysis, all dried samples were oximated with
50 µL of methoxyamine hydrochloride (20 mg/mL in pyridine) for 90 min at 30 ◦C and silylated with
50 µL of MSTFA for 30 min at 37 ◦C. The derivatized sample (1 µL) was injected into the GC-TOF-MS
instrument in the split-less mode. The temperatures of the injector and ion source were maintained
at 250 ◦C and 230 ◦C, respectively. The column temperature was sustained at 75 ◦C for 2 min and
then raised to 300 ◦C at 15 ◦C/min and subsequently maintained for 3 min. The acquisitions were
recorded at the rate of 10 scans/s with a mass scan range of 50–1000 m/z. The GC-TOF-MS analysis
was performed with three repetitive chromatographic runs for each sample extracts. Discriminant
metabolites were identified by comparing the retention times and mass fragment patterns with those
of standard compounds, the NIST database (version 2.0, 2011, FairCom, Gaithersburg, MD, USA),
and an in-house library.

4.5. Data and Statistical Analysis

MS data processing and multivariate statistical analysis were conducted as previously
described [15]. Significantly different metabolites derived from GC-TOF-MS data were tentatively
identified using standard compound retention time and MS fragments. Moreover, we confirmed
the MS spectrum data for selected metabolites with in-house libraries and available web databases,
including Wiley 9, the NIST database (Version 2.0, 2011 FairCom; Gaithersburg, MD, USA), and the
Human Metabolome Database (HMDB; http://www.hmdb.ca/). Statistical analysis was performed
using PASW Statistics (IBM SPSS Inc., Chicago, IL, USA). The significantly discriminant metabolites
from the analytical datasets were selected based on the variable importance in projection, VIP > 0.7
at p < 0.05. Further, the significant differences (p value < 0.05) among the selected metabolites were
evaluated through one-way ANOVA using STATISTICA 7 (Stat Soft Inc., Tulsa, OK, USA). Results
with p < 0.05 were considered statistically significant.

5. Conclusions

In conclusion, based on our results, we confirmed that the AML and CML cell lines analyzed
in this study have higher overall metabolic activity than do HSCs, which may be attributed to the
accumulation of chromosomal abnormalities. Compared to HSCs, we confirmed specifically increased
expression of the citric acid, myo-inositol, oleamide, alpha-palmitin, and cholesterol metabolites in
leukemia cell lines. These results provide information that may help identify leukemia cell-specific
metabolites and related mechanisms in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/11/427/s1,
Figure S1: Differential metabolites identified in THP-1 compared with those from HSCs, Figure S2: Differential
metabolites identified in U937 compared with those from HSCs, Figure S3: Differential metabolites identified in
KG-1 compared with those from HSCs, Figure S4: Differential metabolites identified in K562 compared with those
from HSCs.
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